43 research outputs found

    Course of FEV1 after Onset of Bronchiolitis Obliterans Syndrome in Lung Transplant Recipients

    Full text link
    Rationale: Bronchiolitis obliterans syndrome (BOS), defined by loss of lung function, develops in the majority of lung transplant recipients. However, there is a paucity of information on the subsequent course of lung function in these patients. Objectives: To characterize the course of FEV1 over time after development of BOS and to determine the predictors that influence the rate of functional decline of FEV1. Methods: FEV1% predicted (FEV1%pred) trajectories were studied in 111 lung transplant recipients with BOS by multivariate, linear, mixed-effects statistical models. Measurements and Main Results: FEV1%pred varied over time after BOS onset, with the steepest decline typically seen in the first 6 months (12% decline; p < 0.0001). Bilateral lung transplant recipients had significantly higher FEV1%pred at BOS diagnosis (71 vs. 47%; p < 0.0001) and at 24 months after BOS onset (58 vs. 41%; p = 0.0001). Female gender and pretransplant diagnosis of idiopathic pulmonary fibrosis were associated with a steeper decline in FEV1%pred in the first 6 months after BOS diagnosis (p = 0.02 and 0.04, respectively). A fall in FEV1 greater than 20% in the 6 months preceding BOS (termed “rapid onset”) was associated with shorter time to BOS onset (p = 0.01), lower FEV1%pred at BOS onset (p < 0.0001), steeper decline in the first 6 months (p = 0.03), and lower FEV1%pred at 2 years after onset (p = 0.0002). Conclusions: Rapid onset of BOS, female gender, pretransplant diagnosis of idiopathic pulmonary fibrosis, and single-lung transplantation are associated with worse pulmonary function after BOS onset.Supported in part by National Institutes of Health grants K23 HL077719 (V.N.L.) and K24 HL04212 (F.J.M.), and by a grant from the American Society of Transplantation/ Chest Foundation (V.N.L.).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91969/1/2007 AJRCCM Course of FEV1 after Onset of Bronchiolitis Obliterans Syndrome in Lung Transplant Recipients.pd

    Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression

    Full text link
    Multiple, complex molecular events characterize cancer development and progression(1,2). Deciphering the molecular networks that distinguish organ- confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high- throughput liquid- and- gas- chromatography- based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer ( 42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N- methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non- invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine- N- methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.Early Detection Research Network ; National Institutes of Health ; MTTC ; Clinical Translational Science Award ; Fund for Discovery of the University of Michigan Comprehensive Cancer Center ; University of Michigan Cancer Biostatistics Training Grant ; Doris Duke Charitable FoundationWe thank J. Granger for help in manuscript preparation, J. Siddiqui and R. Varambally for help with the clinical database, and A. Vellaichamy and S. Pullela for technical assistance. We thank K. Pienta for access to metastatic prostate cancer samples from the University of Michigan Prostate SPORE rapid autopsy programme. This work is supported in part by the Early Detection Research Network (A.M.C., J.T.W.), National Institutes of Health (A.S., S.P., J.B., T.M.R., D.G., G.S.O. and A.M.C.) and an MTTC grant (G.S.O. and A.S.). A.M.C. is supported by a Clinical Translational Science Award from the Burroughs Welcome Foundation. A. S. is supported by a grant from the Fund for Discovery of the University of Michigan Comprehensive Cancer Center. L. M. P. is supported by the University of Michigan Cancer Biostatistics Training Grant. A. M. C and S. P. are supported by the Doris Duke Charitable Foundation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62661/1/nature07762.pd

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Role of dutasteride in pre‐clinical ETS fusion‐positive prostate cancer models

    Full text link
    BACKGROUND Androgens play a crucial role in prostate cancer, hence the androgenic pathway has become an important target of therapeutic intervention. Previously we discovered that gene fusions between the 5′‐untranslated region of androgen regulated gene TMPRSS2 and the ETS transcription factor family members were present in a majority of the prostate cancer cases. The resulting aberrant overexpression of ETS genes drives tumor progression. METHODS Here, we evaluated the expression levels of 5α‐reductase isoenzymes in prostate cancer cell lines and tissues. We tested the effect of dutasteride, a 5α‐reductase inhibitor, in TMPRSS2–ERG fusion‐positive VCaP cell proliferation and cell invasion. We also evaluated the effect of dutasteride on the TMPRSS2–ERG fusion gene expression. Finally, we tested dutasteride alone or in combination with an anti‐androgen in VCaP cell xenografts tumor model. RESULTS Our data showed that 5α‐reductase SRD5A1 and SRD5A3 isoenzymes that are responsible for the conversion of testosterone to DHT, are highly expressed in metastatic prostate cancer compared to benign and localized prostate cancer. Dutasteride treatment attenuated VCaP cell proliferation and invasion. VCaP cells pre‐treated with dutasteride showed a reduction in ERG and PSA expression. In vivo studies demonstrated that dutasteride in combination with the anti‐androgen bicalutamide significantly decreased tumor burden in VCaP cell xenograft model. CONCLUSIONS Our findings suggest that dutasteride can inhibit ERG fusion‐positive cell growth and in combination with anti‐androgen, significantly reduce the tumor burden. Our study suggests that anti‐androgens used in combination with dutasteride could synergistically augment the therapeutic efficacy in the treatment of ETS‐positive prostate cancer. Prostate 72:1542–1549, 2012. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93574/1/22509_ftp.pd

    CXCL5 Promotes Prostate Cancer Progression

    No full text
    CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage) and nonimmune (epithelial, endothelial, and fibroblastic) cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate

    Detection of Somatic Copy Number Alterations in Cancer Using Targeted Exome Capture Sequencing12

    Get PDF
    The research community at large is expending considerable resources to sequence the coding region of the genomes of tumors and other human diseases using targeted exome capture (i.e., “whole exome sequencing”). The primary goal of targeted exome sequencing is to identify nonsynonymous mutations that potentially have functional consequences. Here, we demonstrate that whole-exome sequencing data can also be analyzed for comprehensively monitoring somatic copy number alterations (CNAs) by benchmarking the technique against conventional array CGH. A series of 17 matched tumor and normal tissues from patients with metastatic castrate-resistant prostate cancer was used for this assessment. We show that targeted exome sequencing reliably identifies CNAs that are common in advanced prostate cancer, such as androgen receptor (AR) gain and PTEN loss. Taken together, these data suggest that targeted exome sequencing data can be effectively leveraged for the detection of somatic CNAs in cancer
    corecore